BDNF: Neurodegenerative Problems and Natural Neurology – Part 1

By: Michael Lam, MD, MPH; Justin Lam, ABAAHP, FMNM


A senior with neurodegenerative problems related to BDNFNeurodegenerative problems appear to be increasing, not only in the United States but around the world. There is no corresponding increase in options for dealing with these conditions. Research continues but doesn’t keep up with the prevalence of these conditions. Brain derived neurogenic factor (BDNF) has been associated with neurodegenerative problems and shows promise for certain conditions.

In the ongoing research, not a great deal is being conducted on the efficacy of natural neurology as a way of ameliorating the devastating consequences of the conditions. The use of natural neurology approaches has not been widely accepted in traditional medicine. However, it does appear to have significant benefit for people with neurodegenerative problems, as does natural medicine intervention for many issues.

BDNF Preview: Neurodegeneration and Its Effects

Neurodegeneration is a loss of neurons that occurs gradually and can lead to death. Neurons are those cells in our bodies, primarily in the brain, that allow communication of information, help us learn, allow us to move in coordinated ways, and do many other essential functions.

The loss of these neurons is so gradual that symptoms of several conditions brought on by these losses don’t typically show up until later in life. Specific brain areas affected by the loss of neurons give rise to the characteristic symptoms that typify problems resulting from those losses. The more severe the symptoms, the more neuronal loss there has been.

In conditions related to significant memory loss, the neurons have most likely been lost in the hippocampus, the brain region involved in memory retention and retrieval. If the typical clinical triad of unstable posture, bradykinesia, and tremor is presented, loss of neurons in the substantia nigra is most likely. The loss is significant for this condition. This condition is, of course, Parkinson’s Disease. Around 70-80 percent of the dopaminergic neurons must be lost for these symptoms to appear.

These conditions occur over long periods of time and are affected by a number of environmental conditions – such as stress. This length of time and the gradual progression of loss make traditional evaluation and detection of conditions affecting the progression difficult.
Thus, the potential of natural neurology and its ability to work on nutritional and environmental effects grows in importance.

What is the Impact of Neurodegenerative Problems?

These are brain-related disorders and may encompass developmental, psychiatric, and neurodegenerative conditions. Whichever of these problems exists, the human toll in terms of loss of quality of life, need for continuing care, and financial burden is extremely high.

Many of these conditions affect people for years, even decades. Some continue progressing until they lead to the death of the individual. This gives a suggestion of the tremendous burden on individuals and their families.

If the neuronal loss and/or malfunction presents with psychiatric symptoms, the National Institute of Mental Health estimates that up to 25 percent of Americans in any given year are affected, and up to six percent have a significant disability due to the condition.

Relation between neurodegenerative issues and Parkinson's diseaseSome of the neuronal loss shows up as memory-related issues. The 2012 annual report of the Alzheimer’s Association showed 5.4 million Americans have the condition, and the incidence of these kinds of loss-related issues involving memory is expected to continue increasing as the Baby Boomer population reaches old age. Estimates of 11 to 16 million people in the U.S. being affected by this condition by 2050 have been given.

If the neuronal loss presents as the triad of movement issues, the National Institute of Neurological Disorders and Stroke estimates 50,000 new cases of Parkinson’s Disease (as of 2006) will be evaluated yearly. Their estimate of 500,000 current cases may be low because this disorder is typically not detected until it is far advanced.

With these estimates, it is easy to see how significant neurodegenerative conditions are in this country. It is also easy to see why new, effective methods of remediating these conditions are needed, such as methods based on natural neurology and alternative medicine.

What is Natural Neurology?

Also known as functional neurology, natural neurology looks at the dysfunction of the nervous system to pinpoint subtle changes that suggest a loss of neuronal ability, starting at the cellular or orthomolecular level, where cellular degeneration starts.

A practitioner utilizing natural neurology techniques will be looking at the need for fuel and activation so neurons can perform optimally. Fuel for neurons consists of oxygen, glucose, and essential nutrients. Activation is stimulation of the nervous system that brings about changes in the nerve cell. The natural neurology practitioner looks also at eliminating toxins, infectious agents, and immune responses that may prove to have a negative effect on neurons.

Adrenal Fatigue Syndrome (AFS)

With natural neurology’s interest in environmental conditions affecting neurodegenerative problems, AFS and the effect of stress on the adrenal glands and their hormones is important.

When the body experiences stress from any source, a series of cascading processes is set in motion. The hypothalamic-pituitary-adrenal (HPA) axis is stimulated, leading ultimately to the adrenal glands secreting cortisol, the stress fighting hormone. Cortisol helps the body deal with the effects of stress on the various organ systems of the body, including the nervous system and its neurons.

Ideally, once the stress is over, the body reverts back to a homeostatic level and recovers. Unfortunately, in our world of continual stress, the body doesn’t get to recover. The adrenals continue secreting cortisol until a state of adrenal exhaustion occurs. At this point, insufficient cortisol is available to fight the stress effects, and the body begins showing symptoms of AFS.

These symptoms are sometimes vague in the beginning, making them difficult to assess. However, in the later stages of AFS, the symptoms become overwhelming.

Two conditions bearing directly on neurodegeneration appear when cortisol levels decline. One of these conditions is increased inflammatory response. Inflammation is implicated in many conditions of illness, including neuronal dysfunction. Cortisol is a potent anti-inflammatory. With a decrease in cortisol, there will be an increase in inflammation.

The other condition affecting neurodegeneration is an increased immune response with lower cortisol levels, and the immune response is implicated in loss of neurons.

Thus, continuing stress will lead to more neuron loss.

The NeuroEndoMetabolic (NEM) Response

The practitioner of natural neurology’s focus on subtle changes in the nervous system falls in line with the concept of the NEM response to stress.

Traditionally trained practitioners approach the alleviating of illness conditions from the viewpoint of looking only at individual organs or organ systems that may be affected. This is a very limiting approach.

The NEM approach views all organ systems as interrelated. That is, what affects one system affects others as well. This allows practitioners to investigate and address the underlying causes rather than just the symptoms of an illness condition. This is a holistic functional medicine approach.

Inflammation can be related to neurodegenerative issuesIn the case of neurodegenerative problems, the inflammatory response is one of importance. This response involves toxins and pathogens that affect body tissues and the function of the systems of the body. Under conditions of stress, inflammation increases as a result of metabolic changes brought on by stress.

This inflammation often is increased by proinflammatory cytokines that affect the nervous system. This increase in inflammation increases the loss of neurons. A leaky gut, stimulated by stress responses in the metabolic system, can release lipopolysaccharides that have been implicated in some neurodegenerative conditions.

The detoxification process that normally clears out toxins from the body is also negatively affected by stress. Toxins that would typically be taken out of the body are then present instead, leading to an increase in loss of neurons in parts of the body. These toxins come from the environment as well as from a dysbiosis of the gut system brought on by stress and its effects.

Neuroplasticity

In the not-too-distant past, researchers and scientists believed a loss of neurons was permanent, especially the loss of brain neurons. Recent research and clinical practice have shown the brain to have marvelous ability to make new neurons. This is called neuroplasticity.
The ability of the brain to change and adapt as a result of learning has always been known. This is the way we learn as we progress through childhood, but this ability was not considered as having an application​ to adults. Until the 1960s, the thinking was that adult brains were unchanging.

Now, research has shown the brain to have amazing abilities to create new pathways for neurons and to change existing ones in light of experience. Natural neurology also is showing this creation and change to happen in light of nutrition and lifestyle change, as well.
Neuroplasticity happens basically for two reasons. One is the normal changes due to experience and learning that goes on in our early years. The other is because of an insult to the brain, either by accident or through neurodegeneration. In the latter case, some parts of the brain may take over the functions of the parts that were lost or damaged.

Environment and genetics both play a part in neuroplasticity. One aspect of the influence of environment is nutrition and lifestyle change. These are the focus of natural neurology.

There are two types of neuroplasticity. One is functional, in which the brain moves the functions of one area of the brain to another. Often, this kind of neuroplasticity is seen when a person has a stroke and regains the functions lost as another area of the brain takes them over. The other type of neuroplasticity is structural. The brain is able to actually change its structure due to learning. It makes new connections among neurons and can even generate new neuronal growth.

A process known as synaptic pruning also takes place in the brain. This is the process of ridding the body of weak or never used connections between neurons. Neurons that are used frequently tend to grow stronger connections with other neurons. By pruning those weak connections and making stronger ones, the brain is able to change.

Nutrition and Other Factors Affect Neuroplasticity

There are a number of factors that have either a positive or negative effect on neuroplasticity. Many of these factors are being seen to have an effect on neurodegenerative conditions and AFS as well.

Exercise

A couple working out to improve neurodegenerative issuesStudies have shown the beneficial effects of exercise on the structure and function of the brain. One study showed sixth graders who exercised vigorously to have better grades than those who engaged in only moderate exercise. Another study correlated physical activity in teen-aged girls with higher self-esteem and lower rates of depression.

Older adults show less loss of brain tissue when they engage in aerobic exercise. This kind of activity can also increase the volume of both white and gray brain matter.

Sleep

The functioning of the brain and memory are dependent on sleep. One theory regarding memory consolidation says the hippocampus is a temporary storage for new memories. In order for these memories to be transferred into long-term memory, good sleep is required.

The hippocampus also plays a part in the development of memory-related illness conditions. Lack of neurons in this brain area would prevent the short-term storage of many memories.

Sufficient sleep is also necessary for good cognitive functioning in both the long term and short term. Nutrition and lifestyle play important roles in getting good sleep. Eating or drinking too much before bed can interfere with sleep. So can too much exposure to the light from television or computers in the pre-bedtime hours.

Poor nutrition

Research is showing more and more how the gut system and the brain are interconnected. Certainly, lack of good nutrition will affect the functioning of the brain and its neurons, but there is more to this interaction of gut and brain than that.

The gut system has been labeled the “second brain.” The connection between the 100 million neurons in the gut system and the brain via the vagus nerve is vital to good brain function. If nutrition is poor, the gut doesn’t function well. If the gut doesn’t function well, the brain doesn’t function well.

If the gut is in a state of dysbiosis, filled with bacteria, yeast, toxins, mold, and parasites, there will be a negative effect on neuroplasticity. Dysbiosis leads to increased inflammation and an increased immune response. Both of these lead to an increase in neurodegeneration and inhibit neuroplasticity that would remediate the degeneration.

Aging

An aging brain and neurodegenerative problemsAs the brain ages, it depends on cellular defense mechanisms, such as neurotrophins like brain derived neurotrophic factor, or BDNF, to compensate for injury or disease. It also depends on the ability of the dendrites and synapses to change through the effects of factors like nutrition. Both neurotrophins and the effects of nutrition are areas of interest to natural neurology.

The brain uses microglia and the central nervous system’s ability to increase antioxidant capacity to control the immune response. This is dependent on good nutrition, adequate hormones, supplements, and physical activity.

When neurodegeneration issues arise, the effects of nutrition, supplements, and the right balance of hormones gains in importance. With all of these in good supply, the aging brain is more able to utilize the process of neuroplasticity to recover functioning.

Read Part 2 | Part 3

© Copyright 2018 Michael Lam, M.D. All Rights Reserved.


Dr. Lam’s Key Question

Natural neurology is the study of natural methods of remediating neurodegenerative illness conditions. BDNF is a protein that appears to be of great promise in stopping or preventing these illness conditions.


neurodegenerative